Original paper

  • 2024

    41. S. Saito and W. Kubo*, “Artificial thermal flow control on mono-leg thermoelectric device”, in preparation. 

    40. K. Hamada and W. Kubo*, “Enhancement of Metamaterial Thermoelectric Conversion by Deep Reinforcement Learning”, in preparation.

    39. S. Hirobe, S. Wredh, J. K. W. Yang, and W. Kubo*, “Metamaterial thermopile beyond optical diffraction limit”, submitted.

    38. R. Nakayama, S. Sohei, T. Tanaka, and W. Kubo*, “Metasurface absorber enhanced thermoelectric conversion”, Nanophotonics, 13, 1361-1368, 2024. [Link]

    R. Nakayama, S. Sohei, T. Tanaka, and W. Kubo*, “Metasurface absorber enhanced thermoelectric conversion”, arXiv:2308.05956. [Link]

    37. N. Kawamura, T. Tanaka, and W. Kubo*, “Non-radiative cooling”, ACS Photonics, 11, 1221-1227, 2024. [Link]

  • 2023

    36. K. Murakami and W. Kubo*, “Optimizing Broadband Metamaterial Absorber using Deep Reinforcement Learning”, Appl. Phys. Express, 16, 082007, 2023. [Link]

    35. A. Uemura, T. Kato, T. Arima, and W. Kubo*, “Single-layer frequency selective dual-band reflectarray operating at 28 GHz and 39 GHz”, IEICE Communications Express (Comex), 12, 3, 84-89, 2023. [Link]

    34. T. Kato, A. Uemura, T. Arima, and W. Kubo*, “Wide-angle reflectarray controllable by rotational and tilt angles for 28 GHz communication systems”, IEICE Communications Express (Comex), 12, 3, 72-77, 2023.[Link]

  • 2022

    33. T. Asakura, R. Nakayama, S. Saito, S. Katsumata, T. Tanaka, and W. Kubo* “Metamaterial Thermoelectric Conversion “, arXiv Physics, 2204. 13235 (2022).[Link]

  • 2021

    32. S. Katsumata, T. Tanaka, and W. Kubo* “Metamaterial perfect absorber for intensifying thermal gradient across thermoelectric device”, Optics Express, 29, 16396-16405, 2021.[Link]

  • 2020

    31. Shengqi Yin, Fei He, W. Kubo, Qian Wang, James Frame, Nicolas G. Green, and Xu Fang “Coherently tunable metalens tweezers for optofluidic particle routing”, Optics Express, 28, 38949-38959, 2020.[Link]

    30. M. Horikawa, X. Fang, and W. Kubo* “Metamaterial perfect absorber-enhanced plasmonic photo-thermoelectric conversion”, Applied Physics Express, 13, 082006, 2020.[Link]

    29. K. Miwa, H. Ebihara, X. Fang, W. Kubo* “Photo-thermoelectric Conversion of Plasmonic Nanohole Array”, Applied Sciences, 8, 2681, 2020.[Paper][Link]

    28. W. Kubo*, Y. Ogata, J. Frame, T. Tanaka, X. Fang*, “Polarization-dependent phase transition temperature in plasmonic thin films”, Japanese Journal of Applied Physics, 59, 052001 2020.[Link]

    27. S. Katsumata, T. Isegawa, T. Okamoto, and W. Kubo*, “Effect of Metamaterial Perfect Absorber on Device Performance of PCPDTBT:PC71BM Solar Cell”, Physica Status Solidi A, 217, 1900910, 2020.[Link]

  • 2019

    26.W. Kubo*, M. Kondo, and K. Miwa, “Quantitative Analysis of the Plasmonic Photo-thermoelectric Phenomenon”, J. Phys. Chem. C, 123, 21670-21675, 2019. [Link]

    25. M. Remy, B. Bojana, M. Cormann, W. Kubo, C. Yves, B. Kolaric, “Transmission of entangled photons studied by quantum tomography: do we need plasmonic resonances?”, Journal of Physics Communincations, 3, 065011, 2019.

    24. T. Hirata, K. Watanabe, and W. Kubo*, “Nanomembrane as a substrate for ultraweight devices”, Thin solid films, 676, 8-11, 2019.

    23. T. Isegawa, T. Okamoto, M. Kondo, S. Katsumata, and W. Kubo*, “P3HT:PC61BM solar cell embedding silver nanostripes for light absorption enhancement”, Optics Communications, 441, 21-25, 2019. [Link]

     

  • 2018

    22. M. Hasumi,Y. Ogawa, K. Oshinari, J. Shirakashi, W. Kubo, T. Sameshima*, “Reduction in connecting resistivity and optical reflection loss at intermediate layer for mechanically stacked multijunction solar cells”, Japanese Journal of Applied Physics, 57, 102301-1 – 102301-6, 2018.[Link]

    21. H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang*, and W. Kubo*, “Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide”, Scientific Reports, 8, 12764-12749,2018.[Paper][Link]

    20. A. Abumazwed, W. Kubo, T. Tanaka, and A. G. Kirk*,“Improved method for estimating adlayer thickness and bulk RI change for gold nanocrescent sensors”,Scientific Report, 8, 6683-6692, 2018.

  • Before 2017

    19. A. Abumazwed, W. Kubo, T. Tanaka, and A. G. Kirk ,”Improved self-referenced biosensing with emphasis on multiple-resonance nanorod sensors”,Optics Express, 25, 24803-24815, 2017.

    18. W. Kubo* “Effect of Au nanoparticles on PCPDTBT:PC71BM device performance with fair comparisons”, Physica Status Solidi A, 214, 1700110-n/a, 2017.

    17. A. Abumazwed, W. Kubo, C. Shen, T. Tanaka, and A. G. Kirk ,”Projection method for improving signal to noise ratio of localized surface plasmon resonance biosensors”, Biomedical Optics Express, 8, 1, 446-459, 2017.

    16. W. Kubo*, Y. Yokota, and T. Tanaka, “Au nanodot lattices with well-controlled in size and density for thin organic solar cells”, Physica Status Solidi-Rapid Research Letters, 9, 348-352, 2015.

    15. L. Olislager, W. Kubo, T. Tanaka, S. Ungureanu, R. A. L. Vallee, B. Kolaric, P. Emplit, and S. Massar, “Propagation and survival of frequency-bin entangled photons in metallic nanostructure”, Nanophotonics, 4, 324-331, 2015.

    14. X. Fang, S.Yaginuma, W. Kubo, T. Tanaka, “Resonance enhancement of difference-frequency generation through localized surface plasmon excitation”Applied Physics Letters, 102, 203101-203103, 2013.

    13. W. Kubo, S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor”Nano Letters, 11, 8-15, 2011.[Link]

    12. W. Kubo, H. Hayakawa, K. Miyoshi, S. Fujikawa, “Size-controlled simple fabrication of free-standing, ultralong metal nanobelt array”, Journal of Nanoscience and Nanotechnology, 11, 131-137, 2011.

    11. F. Yang, W. Kubo, N. Sakai, T. Tatsuma, “Acceleration of photocatalytic remote oxidation by deposition of Pt nanoparticles onto TiO<sub>2</sub>Electrochemistry, 78, 161-164, 2010.

    10. W. Kubo, S. Fujikawa, “Manipulation of a One Dimensional Molecular Assembly of Helical Superstructures by Dielectrophoresis”, Applied Physics Letters, 95, 163110-1-3, 2009.

    9. W. Kubo, S. Fujikawa,“Embedding of a Gold Nanofin Array in a Polymer Film to Create Transparent, Flexible and Anisotropic Electrodes”, Journal of Materials Chemistry, 19, 2154-2158, 2009.

    8. T. Tatsuma, W. Kubo, “Photocatalytic lithography based on photocatalytic remote oxidation”, Journal of Photopolymer Science and Technology, 20, 83-86, 2007.

    7. W. Kubo, T. Tatsuma, “Mechanisms of Photocatalytic Remote Oxidation” Journal of the American Chemical Society, 128, 16034-16035, 2006.

    6. W. Kubo, T. Tatsuma, “Photocatalytic remote oxidation with various photocatalysts and enhancement of its activity” Journal of Materials Chemistry, 15, 3104-3108, 2005.

    5. H. Notsu, W. Kubo, S. Shitanda, T. Tatsuma, “Super-hydrophobic/super-hydrophilic patterning of gold surfaces by photocatalytic lithography”, Journal of Materials Chemistry, 15, 1523-1527, 2005.

    4. W. Kubo, T. Tatsuma, “Conversion of a solid surface from super-hydrophobic to super-hydrophilic by photocatalytic remote oxidation and photocatalytic lithography” Applied Surface Science, 243, 125-128, 2005.

    3. W. Kubo, T. Tatsuma, “Detection of H2O2 released from TiO2 photocatalyst to air” Analytical Sciences, 20, 591-593, 2004.

    2. W. Kubo, T. Tatsuma, A. Fujishima, H. Kobayashi, “Mechanisms and Resolution of Photocatalytic Lithography” The Journal of Physical Chemistry B, 108, 3005-3009, 2004.

    1. T. Tatsuma, W. Kubo, A. Fujishima, “Patterning of solid surfaces by photocatalytic lithography based on the remote oxidation effect of TiO<sub>2</sub>” Langmuir, 18, 9632-9634, 2002.