Publication

  • 2024

    43. H. Tamehiro, A. Ueno, H. Wang, and W. Kubo*, “Optical Wireless Power Transfer by Thermoelectric Device with Thin Film Absorber”, in preparation.

    42. S. Saito, A. Yamamoto, Yu-Jung Lu, T. Tanaka, and W. Kubo*, “Artificial thermal flow control on mono-leg thermoelectric device”, under review. 

    41. K. Hamada, Hui-Hsin Hsiao, and  W. Kubo*, “Comparison of Algorithms using Deep Reinforcement Learning for Optimization of Hyperbolic Metamaterials”, under review.

    40. Simon Wredh, Mingjin Dai, Kenta Hamada, Md Abdur Rahman, Nur Qalishah Adanan, Golnoush Zamiri, Qing Yang Steve Wu, Wenhao Zhai, Nancy Wong Lai Mun, Zhaogang Dong, Wakana Kubo, Qi Jie Wang, Joel K.W. Yang, Robert E. Simpson, “Sb2Te3-Bi2Te3 Direct Photo-Thermoelectric Mid-Infrared Detection”, Adv. Opt. Mater., 2401450, 2024. [Link]

    39. S. Hirobe, S. Wredh, J. K. W. Yang, and W. Kubo*, “Metamaterial thermopile beyond optical diffraction limit”, Applied Thermal Engineering, 256, 124080, 2024. [Link]

    38. R. Nakayama, S. Sohei, T. Tanaka, and W. Kubo*, “Metasurface absorber enhanced thermoelectric conversion”, Nanophotonics, 13, 1361-1368, 2024. [Link] (arXiv:2308.05956. [Link])

    37. N. Kawamura, T. Tanaka, and W. Kubo*, “Non-radiative cooling”, ACS Photonics, 11, 1221-1227, 2024. [Link]

  • 2023

    36. K. Murakami and W. Kubo*, “Optimizing Broadband Metamaterial Absorber using Deep Reinforcement Learning”, Appl. Phys. Express, 16, 082007, 2023. [Link]

    35. A. Uemura, T. Kato, T. Arima, and W. Kubo*, “Single-layer frequency selective dual-band reflectarray operating at 28 GHz and 39 GHz”, IEICE Communications Express (Comex), 12, 3, 84-89, 2023. [Link]

    34. T. Kato, A. Uemura, T. Arima, and W. Kubo*, “Wide-angle reflectarray controllable by rotational and tilt angles for 28 GHz communication systems”, IEICE Communications Express (Comex), 12, 3, 72-77, 2023.[Link]

  • 2022

    33. T. Asakura, R. Nakayama, S. Saito, S. Katsumata, T. Tanaka, and W. Kubo* “Metamaterial Thermoelectric Conversion “, arXiv Physics, 2204. 13235 (2022).[Link]

  • 2021

    32. S. Katsumata, T. Tanaka, and W. Kubo* “Metamaterial perfect absorber for intensifying thermal gradient across thermoelectric device”, Optics Express, 29, 16396-16405, 2021.[Link]

  • 2020

    31. Shengqi Yin, Fei He, W. Kubo, Qian Wang, James Frame, Nicolas G. Green, and Xu Fang “Coherently tunable metalens tweezers for optofluidic particle routing”, Optics Express, 28, 38949-38959, 2020.[Link]

    30. M. Horikawa, X. Fang, and W. Kubo* “Metamaterial perfect absorber-enhanced plasmonic photo-thermoelectric conversion”, Applied Physics Express, 13, 082006, 2020.[Link]

    29. K. Miwa, H. Ebihara, X. Fang, W. Kubo* “Photo-thermoelectric Conversion of Plasmonic Nanohole Array”, Applied Sciences, 8, 2681, 2020.[Paper][Link]

    28. W. Kubo*, Y. Ogata, J. Frame, T. Tanaka, X. Fang*, “Polarization-dependent phase transition temperature in plasmonic thin films”, Japanese Journal of Applied Physics, 59, 052001 2020.[Link]

    27. S. Katsumata, T. Isegawa, T. Okamoto, and W. Kubo*, “Effect of Metamaterial Perfect Absorber on Device Performance of PCPDTBT:PC71BM Solar Cell”, Physica Status Solidi A, 217, 1900910, 2020.[Link]

  • 2019

    26.W. Kubo*, M. Kondo, and K. Miwa, “Quantitative Analysis of the Plasmonic Photo-thermoelectric Phenomenon”, J. Phys. Chem. C, 123, 21670-21675, 2019. [Link]

    25. M. Remy, B. Bojana, M. Cormann, W. Kubo, C. Yves, B. Kolaric, “Transmission of entangled photons studied by quantum tomography: do we need plasmonic resonances?”, Journal of Physics Communincations, 3, 065011, 2019.

    24. T. Hirata, K. Watanabe, and W. Kubo*, “Nanomembrane as a substrate for ultraweight devices”, Thin solid films, 676, 8-11, 2019.

    23. T. Isegawa, T. Okamoto, M. Kondo, S. Katsumata, and W. Kubo*, “P3HT:PC61BM solar cell embedding silver nanostripes for light absorption enhancement”, Optics Communications, 441, 21-25, 2019. [Link]

     

  • 2018

    22. M. Hasumi,Y. Ogawa, K. Oshinari, J. Shirakashi, W. Kubo, T. Sameshima*, “Reduction in connecting resistivity and optical reflection loss at intermediate layer for mechanically stacked multijunction solar cells”, Japanese Journal of Applied Physics, 57, 102301-1 – 102301-6, 2018.[Link]

    21. H. Takeya, J. Frame, T. Tanaka, Y. Urade, X. Fang*, and W. Kubo*, “Bolometric photodetection using plasmon-assisted resistivity change in vanadium dioxide”, Scientific Reports, 8, 12764-12749,2018.[Paper][Link]

    20. A. Abumazwed, W. Kubo, T. Tanaka, and A. G. Kirk*,“Improved method for estimating adlayer thickness and bulk RI change for gold nanocrescent sensors”,Scientific Report, 8, 6683-6692, 2018.

  • Before 2017

    19. A. Abumazwed, W. Kubo, T. Tanaka, and A. G. Kirk ,”Improved self-referenced biosensing with emphasis on multiple-resonance nanorod sensors”,Optics Express, 25, 24803-24815, 2017.

    18. W. Kubo* “Effect of Au nanoparticles on PCPDTBT:PC71BM device performance with fair comparisons”, Physica Status Solidi A, 214, 1700110-n/a, 2017.

    17. A. Abumazwed, W. Kubo, C. Shen, T. Tanaka, and A. G. Kirk ,”Projection method for improving signal to noise ratio of localized surface plasmon resonance biosensors”, Biomedical Optics Express, 8, 1, 446-459, 2017.

    16. W. Kubo*, Y. Yokota, and T. Tanaka, “Au nanodot lattices with well-controlled in size and density for thin organic solar cells”, Physica Status Solidi-Rapid Research Letters, 9, 348-352, 2015.

    15. L. Olislager, W. Kubo, T. Tanaka, S. Ungureanu, R. A. L. Vallee, B. Kolaric, P. Emplit, and S. Massar, “Propagation and survival of frequency-bin entangled photons in metallic nanostructure”, Nanophotonics, 4, 324-331, 2015.

    14. X. Fang, S.Yaginuma, W. Kubo, T. Tanaka, “Resonance enhancement of difference-frequency generation through localized surface plasmon excitation”Applied Physics Letters, 102, 203101-203103, 2013.

    13. W. Kubo, S. Fujikawa, “Au double nanopillars with nanogap for plasmonic sensor”Nano Letters, 11, 8-15, 2011.[Link]

    12. W. Kubo, H. Hayakawa, K. Miyoshi, S. Fujikawa, “Size-controlled simple fabrication of free-standing, ultralong metal nanobelt array”, Journal of Nanoscience and Nanotechnology, 11, 131-137, 2011.

    11. F. Yang, W. Kubo, N. Sakai, T. Tatsuma, “Acceleration of photocatalytic remote oxidation by deposition of Pt nanoparticles onto TiO<sub>2</sub>Electrochemistry, 78, 161-164, 2010.

    10. W. Kubo, S. Fujikawa, “Manipulation of a One Dimensional Molecular Assembly of Helical Superstructures by Dielectrophoresis”, Applied Physics Letters, 95, 163110-1-3, 2009.

    9. W. Kubo, S. Fujikawa,“Embedding of a Gold Nanofin Array in a Polymer Film to Create Transparent, Flexible and Anisotropic Electrodes”, Journal of Materials Chemistry, 19, 2154-2158, 2009.

    8. T. Tatsuma, W. Kubo, “Photocatalytic lithography based on photocatalytic remote oxidation”, Journal of Photopolymer Science and Technology, 20, 83-86, 2007.

    7. W. Kubo, T. Tatsuma, “Mechanisms of Photocatalytic Remote Oxidation” Journal of the American Chemical Society, 128, 16034-16035, 2006.

    6. W. Kubo, T. Tatsuma, “Photocatalytic remote oxidation with various photocatalysts and enhancement of its activity” Journal of Materials Chemistry, 15, 3104-3108, 2005.

    5. H. Notsu, W. Kubo, S. Shitanda, T. Tatsuma, “Super-hydrophobic/super-hydrophilic patterning of gold surfaces by photocatalytic lithography”, Journal of Materials Chemistry, 15, 1523-1527, 2005.

    4. W. Kubo, T. Tatsuma, “Conversion of a solid surface from super-hydrophobic to super-hydrophilic by photocatalytic remote oxidation and photocatalytic lithography” Applied Surface Science, 243, 125-128, 2005.

    3. W. Kubo, T. Tatsuma, “Detection of H2O2 released from TiO2 photocatalyst to air” Analytical Sciences, 20, 591-593, 2004.

    2. W. Kubo, T. Tatsuma, A. Fujishima, H. Kobayashi, “Mechanisms and Resolution of Photocatalytic Lithography” The Journal of Physical Chemistry B, 108, 3005-3009, 2004.

    1. T. Tatsuma, W. Kubo, A. Fujishima, “Patterning of solid surfaces by photocatalytic lithography based on the remote oxidation effect of TiO<sub>2</sub>” Langmuir, 18, 9632-9634, 2002.